Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Controller and Quantizer Selection for Partially Observable Linear-Quadratic-Gaussian Systems (1909.13609v2)

Published 30 Sep 2019 in eess.SY, cs.SY, and math.OC

Abstract: In networked control systems, often the sensory signals are quantized before being transmitted to the controller. Consequently, performance is affected by the coarseness of this quantization process. Modern communication technologies allow users to obtain resolution-varying quantized measurements based on the prices paid. In this paper, we consider joint optimal controller synthesis and quantizer scheduling for a partially observed Quantized-Feedback Linear-Quadratic-Gaussian (QF-LQG) system, where the measurements are quantized before being sent to the controller. The system is presented with several choices of quantizers, along with the cost of using each quantizer. The objective is to jointly select the quantizers and synthesize the controller to strike an optimal balance between control performance and quantization cost. When the innovation signal is quantized instead of the measurement, the problem is decoupled into two optimization problems: one for optimal controller synthesis, and the other for optimal quantizer selection. The optimal controller is found by solving a Riccati equation and the optimal quantizer selection policy is found by solving a linear program (LP)- both of which can be solved offline.

Citations (4)

Summary

We haven't generated a summary for this paper yet.