Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Truth Serum (1909.13004v1)

Published 28 Sep 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Wisdom of the crowd revealed a striking fact that the majority answer from a crowd is often more accurate than any individual expert. We observed the same story in machine learning--ensemble methods leverage this idea to combine multiple learning algorithms to obtain better classification performance. Among many popular examples is the celebrated Random Forest, which applies the majority voting rule in aggregating different decision trees to make the final prediction. Nonetheless, these aggregation rules would fail when the majority is more likely to be wrong. In this paper, we extend the idea proposed in Bayesian Truth Serum that "a surprisingly more popular answer is more likely the true answer" to classification problems. The challenge for us is to define or detect when an answer should be considered as being "surprising". We present two machine learning aided methods which aim to reveal the truth when it is minority instead of majority who has the true answer. Our experiments over real-world datasets show that better classification performance can be obtained compared to always trusting the majority voting. Our proposed methods also outperform popular ensemble algorithms. Our approach can be generically applied as a subroutine in ensemble methods to replace majority voting rule.

Citations (6)

Summary

We haven't generated a summary for this paper yet.