Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Space-time calibration of wind speed forecasts from regional climate models (1909.12862v3)

Published 27 Sep 2019 in stat.AP

Abstract: Numerical weather predictions (NWP) are systematically subject to errors due to the deterministic solutions used by numerical models to simulate the atmosphere. Statistical postprocessing techniques are widely used nowadays for NWP calibration. However, time-varying bias is usually not accommodated by such models. Its calibration performance is also sensitive to the temporal window used for training. This paper proposes space-time models that extend the main statistical postprocessing approaches to calibrate NWP model outputs. Trans-Gaussian random fields are considered to account for meteorological variables with asymmetric behavior. Data augmentation is used to account for censuring in the response variable. The benefits of the proposed extensions are illustrated through the calibration of hourly 10 m wind speed forecasts in Southeastern Brazil coming from the Eta model.

Summary

We haven't generated a summary for this paper yet.