Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Optimal Power Flow for Distribution Networks with State Estimation Feedback (1909.12763v2)

Published 27 Sep 2019 in math.OC, cs.SY, and eess.SY

Abstract: Conventional optimal power flow (OPF) solvers assume full observability of the involved system states. However, in practice, there is a lack of reliable system monitoring devices in the distribution networks. To close the gap between the theoretic algorithm design and practical implementation, this work proposes to solve the OPF problems based on the state estimation (SE) feedback for the distribution networks where only a part of the involved system states are physically measured. The SE feedback increases the observability of the under-measured system and provides more accurate system states monitoring when the measurements are noisy. We analytically investigate the convergence of the proposed algorithm. The numerical results demonstrate that the proposed approach is more robust to large pseudo measurement variability and inherent sensor noise in comparison to the other frameworks without SE feedback.

Citations (7)

Summary

We haven't generated a summary for this paper yet.