Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropy Stable p-Nonconforming Discretizations with the Summation-by-Parts Property for the Compressible Euler equations (1909.12536v1)

Published 27 Sep 2019 in math.NA, cs.NA, math-ph, math.MP, and physics.flu-dyn

Abstract: The entropy conservative/stable algorithm of Friedrich~\etal (2018) for hyperbolic conservation laws on nonconforming p-refined/coarsened Cartesian grids, is extended to curvilinear grids for the compressible Euler equations. The primary focus is on constructing appropriate coupling procedures across the curvilinear nonconforming interfaces. A simple and flexible approach is proposed that uses interpolation operators from one element to the other. On the element faces, the analytic metrics are used to construct coupling terms, while metric terms in the volume are approximated to satisfy a discretization of the geometric conservation laws. The resulting scheme is entropy conservative/stable, elementwise conservative, and freestream preserving. The accuracy and stability properties of the resulting numerical algorithm are shown to be comparable to those of the original conforming scheme (~p+1 convergence) in the context of the isentropic Euler vortex and the inviscid Taylor-Green vortex problems on manufactured high order grids.

Citations (8)

Summary

We haven't generated a summary for this paper yet.