Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autoencoder-Based Error Correction Coding for One-Bit Quantization (1909.12120v1)

Published 24 Sep 2019 in cs.IT, cs.LG, eess.SP, math.IT, and stat.ML

Abstract: This paper proposes a novel deep learning-based error correction coding scheme for AWGN channels under the constraint of one-bit quantization in the receivers. Specifically, it is first shown that the optimum error correction code that minimizes the probability of bit error can be obtained by perfectly training a special autoencoder, in which "perfectly" refers to converging the global minima. However, perfect training is not possible in most cases. To approach the performance of a perfectly trained autoencoder with a suboptimum training, we propose utilizing turbo codes as an implicit regularization, i.e., using a concatenation of a turbo code and an autoencoder. It is empirically shown that this design gives nearly the same performance as to the hypothetically perfectly trained autoencoder, and we also provide a theoretical proof of why that is so. The proposed coding method is as bandwidth efficient as the integrated (outer) turbo code, since the autoencoder exploits the excess bandwidth from pulse shaping and packs signals more intelligently thanks to sparsity in neural networks. Our results show that the proposed coding scheme at finite block lengths outperforms conventional turbo codes even for QPSK modulation. Furthermore, the proposed coding method can make one-bit quantization operational even for 16-QAM.

Citations (35)

Summary

We haven't generated a summary for this paper yet.