Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensionwise Separable 2-D Graph Convolution for Unsupervised and Semi-Supervised Learning on Graphs (1909.12038v5)

Published 26 Sep 2019 in cs.LG and stat.ML

Abstract: Graph convolutional neural networks (GCN) have been the model of choice for graph representation learning, which is mainly due to the effective design of graph convolution that computes the representation of a node by aggregating those of its neighbors. However, existing GCN variants commonly use 1-D graph convolution that solely operates on the object link graph without exploring informative relational information among object attributes. This significantly limits their modeling capability and may lead to inferior performance on noisy and sparse real-world networks. In this paper, we explore 2-D graph convolution to jointly model object links and attribute relations for graph representation learning. Specifically, we propose a computationally efficient dimensionwise separable 2-D graph convolution (DSGC) for filtering node features. Theoretically, we show that DSGC can reduce intra-class variance of node features on both the object dimension and the attribute dimension to learn more effective representations. Empirically, we demonstrate that by modeling attribute relations, DSGC achieves significant performance gain over state-of-the-art methods for node classification and clustering on a variety of real-world networks. The source code for reproducing the experimental results is available at https://github.com/liqimai/DSGC.

Citations (13)

Summary

We haven't generated a summary for this paper yet.