Papers
Topics
Authors
Recent
Search
2000 character limit reached

Data driven regularization by projection

Published 25 Sep 2019 in math.NA and cs.NA | (1909.11570v3)

Abstract: We study linear inverse problems under the premise that the forward operator is not at hand but given indirectly through some input-output training pairs. We demonstrate that regularization by projection and variational regularization can be formulated by using the training data only and without making use of the forward operator. We study convergence and stability of the regularized solutions in view of T. I. Seidman. "Nonconvergence Results for the Application of Least-Squares Estimation to Ill-Posed Problems". Journal of Optimization Theory and Applications 30.4 (1980), pp. 535-547, who showed that regularization by projection is not convergent in general, by giving some insight on the generality of Seidman's nonconvergence example. Moreover, we show, analytically and numerically, that regularization by projection is indeed capable of learning linear operators, such as the Radon transform.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.