Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Moment maps and cohomology of non-reductive quotients (1909.11495v5)

Published 25 Sep 2019 in math.AG

Abstract: Let $H$ be a complex linear algebraic group with internally graded unipotent radical acting on a complex projective variety $X$. Given an ample linearisation of the action and an associated Fubini-Study K\"ahler form which is invariant for a maximal compact subgroup $Q$ of $H$, we define a notion of moment map for the action of $H$, and under suitable conditions (that the linearisation is well-adapted and semistability coincides with stability) we describe the (non-reductive) GIT quotient $X/!/H$ introduced by B\'erczi, Doran, Hawes and Kirwan in terms of this moment map. Using this description we derive formulas for the Betti numbers of $X/!/H$ and express the rational cohomology ring of $X/!/H$ in terms of the rational cohomology ring of the GIT quotient $X/!/TH$, where $TH$ is a maximal torus in $H$. We relate intersection pairings on $X/!/H$ to intersection pairings on $X/!/TH$, obtaining a residue formula for these pairings on $X/!/H$ analogous to the residue formula of Jeffrey-Kirwan. As an application, we announce a proof of the Green-Griffiths-Lang and Kobayashi conjectures for projective hypersurfaces with polynomial degree.

Summary

We haven't generated a summary for this paper yet.