Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp bounds for decomposing graphs into edges and triangles (1909.11371v3)

Published 25 Sep 2019 in math.CO

Abstract: For a real constant $\alpha$, let $\pi_3\alpha(G)$ be the minimum of twice the number of $K_2$'s plus $\alpha$ times the number of $K_3$'s over all edge decompositions of $G$ into copies of $K_2$ and $K_3$, where $K_r$ denotes the complete graph on $r$ vertices. Let $\pi_3\alpha(n)$ be the maximum of $\pi_3\alpha(G)$ over all graphs $G$ with $n$ vertices. The extremal function $\pi_33(n)$ was first studied by Gy\H{o}ri and Tuza [Decompositions of graphs into complete subgraphs of given order, Studia Sci. Math. Hungar. 22 (1987), 315--320]. In a recent progress on this problem, Kr\'al', Lidick\'y, Martins and Pehova [Decomposing graphs into edges and triangles, Combin. Prob. Comput. 28 (2019) 465--472] proved via flag algebras that $\pi_33(n)\le (1/2+o(1))n2$. We extend their result by determining the exact value of $\pi_3\alpha(n)$ and the set of extremal graphs for all $\alpha$ and sufficiently large $n$. In particular, we show for $\alpha=3$ that $K_n$ and the complete bipartite graph $K_{\lfloor n/2\rfloor,\lceil n/2\rceil}$ are the only possible extremal examples for large $n$.

Summary

We haven't generated a summary for this paper yet.