Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple-Rate Channel Codes in $\texttt{GF}(p^{n^{2}})$ (1909.11296v1)

Published 25 Sep 2019 in cs.IT and math.IT

Abstract: A code $\mathcal{C}(n, k, d)$ defined over $\texttt{GF}(q{n})$ is conventionally designed to encode a $k$-symbol user data into a codeword of length $n$, resulting in a fixed-rate coding. This paper proposes a coding procedure to derive a multiple-rate code from existing channel codes defined over a composite field $\texttt{GF}(q{n})$. Formally, by viewing a symbol of $\texttt{GF}(q{n})$ as an $n$-tuple over the base field $\texttt{GF}(q)$, the proposed coding scheme employs children codes $\mathcal{C}{1}(n, 1), \mathcal{C}{2}(n, 2), \ldots, \mathcal{C}_{n}(n, n)$ defined over $\texttt{GF}(q)$ to encode user messages of arbitrary lengths and incorporates a variable-rate feature. In sequel, unlike the conventional block codes of length $n$, the derived multiple-rate code of fixed blocklength $n$ (over $\texttt{GF}(q{n})$) can be used to encode and decode user messages ${\bf m}$ (over $\texttt{GF}(q)$) of arbitrary lengths $|{\bf m}| = k, k+1, \ldots, kn$, thereby supporting a range of information rates - inclusive of the code rates $1/n, 2/n, \ldots, (k-1)/n$, in addition to the existing code rate $k/n$. The proposed multiple-rate coding scheme is also equipped with a decoding strategy, wherein the identification of children encoded user messages of variable length are carried out through a simple procedure using {\it orthogonal projectors}.

Summary

We haven't generated a summary for this paper yet.