Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diachronic Topics in New High German Poetry (1909.11189v1)

Published 24 Sep 2019 in cs.CL and cs.IR

Abstract: Statistical topic models are increasingly and popularly used by Digital Humanities scholars to perform distant reading tasks on literary data. It allows us to estimate what people talk about. Especially Latent Dirichlet Allocation (LDA) has shown its usefulness, as it is unsupervised, robust, easy to use, scalable, and it offers interpretable results. In a preliminary study, we apply LDA to a corpus of New High German poetry (textgrid, with 51k poems, 8m token), and use the distribution of topics over documents for a classification of poems into time periods and for authorship attribution.

Citations (6)

Summary

We haven't generated a summary for this paper yet.