Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Code-switching Language Modeling With Bilingual Word Embeddings: A Case Study for Egyptian Arabic-English (1909.10892v1)

Published 24 Sep 2019 in cs.CL

Abstract: Code-switching (CS) is a widespread phenomenon among bilingual and multilingual societies. The lack of CS resources hinders the performance of many NLP tasks. In this work, we explore the potential use of bilingual word embeddings for code-switching (CS) LLMing (LM) in the low resource Egyptian Arabic-English language. We evaluate different state-of-the-art bilingual word embeddings approaches that require cross-lingual resources at different levels and propose an innovative but simple approach that jointly learns bilingual word representations without the use of any parallel data, relying only on monolingual and a small amount of CS data. While all representations improve CS LM, ours performs the best and improves perplexity 33.5% relative over the baseline.

Citations (10)

Summary

We haven't generated a summary for this paper yet.