Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Number of Factors by Adjusted Eigenvalues Thresholding (1909.10710v1)

Published 24 Sep 2019 in stat.ME

Abstract: Determining the number of common factors is an important and practical topic in high dimensional factor models. The existing literatures are mainly based on the eigenvalues of the covariance matrix. Due to the incomparability of the eigenvalues of the covariance matrix caused by heterogeneous scales of observed variables, it is very difficult to give an accurate relationship between these eigenvalues and the number of common factors. To overcome this limitation, we appeal to the correlation matrix and show surprisingly that the number of eigenvalues greater than $1$ of population correlation matrix is the same as the number of common factors under some mild conditions. To utilize such a relationship, we study the random matrix theory based on the sample correlation matrix in order to correct the biases in estimating the top eigenvalues and to take into account of estimation errors in eigenvalue estimation. This leads us to propose adjusted correlation thresholding (ACT) for determining the number of common factors in high dimensional factor models, taking into account the sampling variabilities and biases of top sample eigenvalues. We also establish the optimality of the proposed methods in terms of minimal signal strength and optimal threshold. Simulation studies lend further support to our proposed method and show that our estimator outperforms other competing methods in most of our testing cases.

Summary

We haven't generated a summary for this paper yet.