Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Incorporate Monotonicity in Deep Networks While Preserving Flexibility? (1909.10662v3)

Published 24 Sep 2019 in cs.LG

Abstract: The importance of domain knowledge in enhancing model performance and making reliable predictions in the real-world is critical. This has led to an increased focus on specific model properties for interpretability. We focus on incorporating monotonic trends, and propose a novel gradient-based point-wise loss function for enforcing partial monotonicity with deep neural networks. While recent developments have relied on structural changes to the model, our approach aims at enhancing the learning process. Our model-agnostic point-wise loss function acts as a plug-in to the standard loss and penalizes non-monotonic gradients. We demonstrate that the point-wise loss produces comparable (and sometimes better) results on both AUC and monotonicity measure, as opposed to state-of-the-art deep lattice networks that guarantee monotonicity. Moreover, it is able to learn differentiated individual trends and produces smoother conditional curves which are important for personalized decisions, while preserving the flexibility of deep networks.

Citations (36)

Summary

We haven't generated a summary for this paper yet.