Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry, Computation, and Optimality in Stochastic Optimization (1909.10455v3)

Published 23 Sep 2019 in math.OC, cs.IT, cs.LG, math.IT, and stat.ML

Abstract: We study computational and statistical consequences of problem geometry in stochastic and online optimization. By focusing on constraint set and gradient geometry, we characterize the problem families for which stochastic- and adaptive-gradient methods are (minimax) optimal and, conversely, when nonlinear updates -- such as those mirror descent employs -- are necessary for optimal convergence. When the constraint set is quadratically convex, diagonally pre-conditioned stochastic gradient methods are minimax optimal. We provide quantitative converses showing that the ``distance'' of the underlying constraints from quadratic convexity determines the sub-optimality of subgradient methods. These results apply, for example, to any $\ell_p$-ball for $p < 2$, and the computation/accuracy tradeoffs they demonstrate exhibit a striking analogy to those in Gaussian sequence models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.