Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability for coupled waves with locally disturbed Kelvin-Voigt damping (1909.09838v1)

Published 21 Sep 2019 in math.AP

Abstract: We consider a coupled wave system with partial Kelvin-Voigt damping in the interval (-1,1), where one wave is dissipative and the other does not. When the damping is effective in the whole domain (-1,1) it was proven in H.Portillo Oquendo and P.Sanez Pacheco, optimal decay for coupled waves with Kelvin-voigt damping, Applied Mathematics Letters 67 (2017), 16-20. That the energy is decreasing over the time with a rate equal to $t{-\frac{1}{2}}$. In this paper, using the frequency domain method we show the effect of the coupling and the non smoothness of the damping coefficient on the energy decay. Actually, as expected we show the lack of exponential stability, that the semigroup loses speed and it decays polynomially with a slower rate then given in, H.Portillo Oquendo and P.Sanez Pacheco, optimal decay for coupled waves with Kelvin-voigt damping, Applied Mathematics Letters 67 (2017), 16-20, down to zero at least as $t{-\frac{1}{12}}$.

Summary

We haven't generated a summary for this paper yet.