Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

POD-Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation (1909.09631v2)

Published 20 Sep 2019 in math.NA and cs.NA

Abstract: In this work we recast parametrized time dependent optimal control problems governed by partial differential equations in a saddle point formulation and we propose reduced order methods as an effective strategy to solve them. Indeed, on one hand parametrized time dependent optimal control is a very powerful mathematical model which is able to describe several physical phenomena; on the other hand, it requires a huge computational effort. Reduced order methods are a suitable approach to have rapid and accurate simulations. We rely on POD-Galerkin reduction over the physical and geometrical parameters of the optimality system in a space-time formulation. Our theoretical results and our methodology are tested on two examples: a boundary time dependent optimal control for a Graetz flow and a distributed optimal control governed by time dependent Stokes equations. With these two experiments the convenience of the reduced order modelling is further extended to the field of time dependent optimal control.

Citations (23)

Summary

We haven't generated a summary for this paper yet.