Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An inexact proximal augmented Lagrangian framework with arbitrary linearly convergent inner solver for composite convex optimization (1909.09582v1)

Published 20 Sep 2019 in math.OC

Abstract: We propose an inexact proximal augmented Lagrangian framework with explicit inner problem termination rule for composite convex optimization problems. We consider arbitrary linearly convergent inner solver including in particular stochastic algorithms, making the resulting framework more scalable facing the ever-increasing problem dimension. Each subproblem is solved inexactly with an explicit and self-adaptive stopping criterion, without requiring to set an a priori target accuracy. When the primal and dual domain are bounded, our method achieves $O(1/\sqrt{\epsilon})$ and $O(1/{\epsilon})$ complexity bound in terms of number of inner solver iterations, respectively for the strongly convex and non-strongly convex case. Without the boundedness assumption, only logarithm terms need to be added and the above two complexity bounds increase respectively to $\tilde O(1/\sqrt{\epsilon})$ and $\tilde O(1/{\epsilon})$, which hold both for obtaining $\epsilon$-optimal and $\epsilon$-KKT solution. Within the general framework that we propose, we also obtain $\tilde O(1/{\epsilon})$ and $\tilde O(1/{\epsilon2})$ complexity bounds under relative smoothness assumption on the differentiable component of the objective function. We show through theoretical analysis as well as numerical experiments the computational speedup possibly achieved by the use of randomized inner solvers for large-scale problems.

Summary

We haven't generated a summary for this paper yet.