Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resonant Laplace-Lagrange theory for extrasolar systems in mean-motion resonance (1909.09462v1)

Published 19 Sep 2019 in astro-ph.EP, math.DS, physics.class-ph, and physics.space-ph

Abstract: Extrasolar systems with planets on eccentric orbits close to or in mean-motion resonances are common. The classical low-order resonant Hamiltonian expansion is unfit to describe the long-term evolution of these systems. We extend the Laplace-Lagrange secular approximation for coplanar systems with two planets by including (near-)resonant harmonics, and realize an expansion at high order in the eccentricities of the resonant Hamiltonian both at orders one and two in the masses. We show that the expansion at first order in the masses gives a qualitative good approximation of the dynamics of resonant extrasolar systems with moderate eccentricities, while the second order is needed to reproduce more accurately their orbital evolutions. The resonant approach is also required to correct the secular frequencies of the motion given by the Laplace-Lagrange secular theory in the vicinity of a mean-motion resonance. The dynamical evolutions of four (near-)resonant extrasolar systems are discussed, namely GJ 876 (2:1 resonance), HD 60532 (3:1), HD 108874 and GJ 3293 (close to 4:1).

Summary

We haven't generated a summary for this paper yet.