Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Named Entity Recognition with Partially Annotated Training Data (1909.09270v1)

Published 20 Sep 2019 in cs.CL and cs.LG

Abstract: Supervised machine learning assumes the availability of fully-labeled data, but in many cases, such as low-resource languages, the only data available is partially annotated. We study the problem of Named Entity Recognition (NER) with partially annotated training data in which a fraction of the named entities are labeled, and all other tokens, entities or otherwise, are labeled as non-entity by default. In order to train on this noisy dataset, we need to distinguish between the true and false negatives. To this end, we introduce a constraint-driven iterative algorithm that learns to detect false negatives in the noisy set and downweigh them, resulting in a weighted training set. With this set, we train a weighted NER model. We evaluate our algorithm with weighted variants of neural and non-neural NER models on data in 8 languages from several language and script families, showing strong ability to learn from partial data. Finally, to show real-world efficacy, we evaluate on a Bengali NER corpus annotated by non-speakers, outperforming the prior state-of-the-art by over 5 points F1.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Stephen Mayhew (12 papers)
  2. Snigdha Chaturvedi (40 papers)
  3. Chen-Tse Tsai (2 papers)
  4. Dan Roth (222 papers)
Citations (48)