Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Goal-Embedded Dual Hierarchical Model for Task-Oriented Dialogue Generation (1909.09220v1)

Published 19 Sep 2019 in cs.CL and cs.AI

Abstract: Hierarchical neural networks are often used to model inherent structures within dialogues. For goal-oriented dialogues, these models miss a mechanism adhering to the goals and neglect the distinct conversational patterns between two interlocutors. In this work, we propose Goal-Embedded Dual Hierarchical Attentional Encoder-Decoder (G-DuHA) able to center around goals and capture interlocutor-level disparity while modeling goal-oriented dialogues. Experiments on dialogue generation, response generation, and human evaluations demonstrate that the proposed model successfully generates higher-quality, more diverse and goal-centric dialogues. Moreover, we apply data augmentation via goal-oriented dialogue generation for task-oriented dialog systems with better performance achieved.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi-An Lai (11 papers)
  2. Arshit Gupta (13 papers)
  3. Yi Zhang (994 papers)
Citations (1)