Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated detection of oral pre-cancerous tongue lesions using deep learning for early diagnosis of oral cavity cancer (1909.08987v1)

Published 18 Sep 2019 in eess.IV, cs.CV, cs.LG, and stat.ML

Abstract: Discovering oral cavity cancer (OCC) at an early stage is an effective way to increase patient survival rate. However, current initial screening process is done manually and is expensive for the average individual, especially in developing countries worldwide. This problem is further compounded due to the lack of specialists in such areas. Automating the initial screening process using AI to detect pre-cancerous lesions can prove to be an effective and inexpensive technique that would allow patients to be triaged accordingly to receive appropriate clinical management. In this study, we have applied and evaluated the efficacy of six deep convolutional neural network (DCNN) models using transfer learning, for identifying pre-cancerous tongue lesions directly using a small data set of clinically annotated photographic images to diagnose early signs of OCC. DCNN model based on Vgg19 architecture was able to differentiate between benign and pre-cancerous tongue lesions with a mean classification accuracy of 0.98, sensitivity 0.89 and specificity 0.97. Additionally, the ResNet50 DCNN model was able to distinguish between five types of tongue lesions i.e. hairy tongue, fissured tongue, geographic tongue, strawberry tongue and oral hairy leukoplakia with a mean classification accuracy of 0.97. Preliminary results using an (AI+Physician) ensemble model demonstrate that an automated initial screening process of tongue lesions using DCNNs can achieve near-human level classification performance for diagnosing early signs of OCC in patients.

Citations (59)

Summary

We haven't generated a summary for this paper yet.