Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geodesic stretch, pressure metric and marked length spectrum rigidity (1909.08666v2)

Published 18 Sep 2019 in math.DG, math.AP, and math.DS

Abstract: We refine the recent local rigidity result for the marked length spectrum obtained by the first and third author in \cite{Guillarmou-Lefeuvre-18} and give an alternative proof using the geodesic stretch between two Anosov flows and some uniform estimate on the variance appearing in the central limit theorem for Anosov geodesic flows. In turn, we also introduce a new pressure metric on the space of isometry classes, that reduces to the Weil-Peterson metric in the case of Teichm\"uller space and is related to the works of \cite{McMullen,Bridgeman-Canary-Labourie-Sambarino-15}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. An integrable deformation of an ellipse of small eccentricity is an ellipse. Annals of Mathematics, 184:527–558, 2016.
  2. Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal., 5(5):731–799, 1995.
  3. The pressure metric for Anosov representations. Geom. Funct. Anal., 25(4):1089–1179, 2015.
  4. An introduction to pressure metrics for higher Teichmüller spaces. Ergodic Theory Dynam. Systems, 38(6):2001–2035, 2018.
  5. M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
  6. K. Burns and A. Katok. Manifolds with nonpositive curvature. Ergodic Theory Dynam. Systems, 5(2):307–317, 1985.
  7. R. Bowen and D. Ruelle. The ergodic theory of axioma flows. Inventiones Mathematicae, 29(3):181–202, 1975.
  8. C.B. Croke and A. Fathi. An inequality between energy and intersection. Bull. London Math. Soc., 22:489–494, 1990.
  9. G. Contreras. Regularity of topological and metric entropy of hyperbolic flows. Math. Z., 210(1):97–111, 1992.
  10. C. B. Croke. Rigidity for surfaces of nonpositive curvature. Comment. Math. Helv., 65(1):150–169, 1990.
  11. Spectral rigidity of a compact negatively curved manifold. Topology, 37(6):1265–1273, 1998.
  12. Fried conjecture in small dimensions. Inventiones Math., 220:525–579, 2020.
  13. Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation. Ann. of Math. (2), 123(3):537–611, 1986.
  14. Some problems of integral geometry on anosov manifolds. Ergodic Theory Dyn. Syst., 23:59–74, 2003.
  15. Conformal Killing symmetric tensor fields on Riemannian manifolds. Mat. Tr., 13(1):85–145, 2010.
  16. Dynamical spectral rigidity among 2222-symmetric strictly convex domains close to a circle. Annals of Mathematics, 186:277–314, 2017.
  17. S. Dyatlov and M. Zworski. Dynamical zeta functions for Anosov flows via microlocal analysis. Ann. Sci. Éc. Norm. Supér. (4), 49(3):543–577, 2016.
  18. Mathematical Theory of Scattering Resonances, volume 200. American Mathematical Society, 2019.
  19. D. G. Ebin. On the space of Riemannian metrics. Bull. Amer. Math. Soc., 74:1001–1003, 1968.
  20. D. G. Ebin. The space of Riemannian metrics. In Proc. Symp. Pure Math., volume 15, pages 11–40. Amer. Math. Soc, 1970.
  21. A. Fathi and L. Flaminio. Infinitesimal conjugacies and Weil-Petersson metric. Annales de l’Institut Fourier, 43(1):279–299, 1993.
  22. L. Flaminio. Local entropy rigidity for hyperbolic manifolds. Communications in Analysis and Geometry, 3(4):555–596, 1995.
  23. T. Frankel. On theorems of Hurwitz and Bochner. J. Math. Mech., 15:373–377, 1966.
  24. Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open J. Math, 1:35–81, 2008.
  25. F. Faure and J. Sjöstrand. Upper bound on the density of Ruelle resonances for Anosov flows. Comm. Math. Phys., 308(2):325–364, 2011.
  26. The calculus of thermodynamical formalism. Journ of the EMS, 20(10):2357–2412, 2018.
  27. S. Goüezel and T. Lefeuvre. Classical and microlocal analysis of the X-ray transform on Anosov manifolds. Analysis and PDE, to appear.
  28. C. Guillarmou and T. Lefeuvre. The marked length spectrum of Anosov manifolds. Annals of Mathematics, 190(1):321–344, 2019.
  29. M. Gromov. Three remarks on geodesic dynamics and fundamental group. Enseign. Math. (2), 46(3-4):391–402, 2000.
  30. A. Grigis and J. Sjöstrand. Microlocal analysis for differential operators: an introduction. Cambridge Univ Pr, 1994.
  31. Y. Guedes Bonthonneau. Flow-independent Anisotropic space, and perturbation of resonances. Revista de la Unión Matemática Argentina, 61(1):63–72., 2020.
  32. C. Guillarmou. Invariant distributions and X-ray transform for Anosov flows. J. Differential Geom., 105(2):177–208, 2017.
  33. R.S. Hamilton. The inverse function theorem of Nash and Moser. Bulletin of the A.M.S., 7(1):65–222, June 1982.
  34. U. Hamenstädt. Cocycles, symplectic structures and intersection. Geom. Funct. Anal., 9(1):90–140, 1999.
  35. B. Hasselblatt and T. Fisher. Hyperbolic flows. Zurich Lectures in Advanced Mathematics. European Math Society, 2019.
  36. S. Hurder and A. Katok. Differentiability, rigidity and Godbillon-Vey classes for Anosov flows. Inst. Hautes Études Sci. Publ. Math., (72):5–61 (1991), 1990.
  37. L. Hörmander. The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition. Springer, Berlin, 2003.
  38. Stable manifolds and hyperbolic sets. In R.I. 1970. Amer. Math. Soc., Providence, editor, In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif.), volume XIV, pages 133–163, 1968.
  39. A. Katok. Four applications of conformal equivalence to geometry and dynamics. Ergodic Theory Dynam. Systems, 8*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT(Charles Conley Memorial Issue):139–152, 1988.
  40. Differentiability and analyticity of topological entropy for Anosov and geodesic flows. Invent. Math., 98:581–597, 1989.
  41. Differentiability of entropy for Anosov and geodesic flows. Bull. Amer. Math. Soc. (N.S.), 22(2):285–293, 1990.
  42. Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows. Comm. Math. Phys., 138(1):19–31, 1991.
  43. W. Klingenberg. Riemannian manifolds with geodesic flow of Anosov type. Ann. of Math. (2), 99:1–13, 1974.
  44. G. Knieper. Volume growth, entropy and the geodesic stretch. Math. Res. Lett., 2(1):39–58, 1995.
  45. G. Knieper. Hyperbolic dynamical systems, in Handbook of Dynamical Systems Vol 1A, pages 239–319. Elsevier, Amsterdam, 2002.
  46. Gerhard Knieper. New results on noncompact harmonic manifolds. Comment. Math. Helv., 87(3):669–703, 2012.
  47. A. Katsuda and T. Sunada. Closed orbits in homology classes. Publ. Math. IHES, 71:5–32, 1990.
  48. C. Liverani. On contact anosov flows. Annals of Mathematics, 159(3):1275–1312, 2004.
  49. The infinite dimensional manifold of hölder equilibirum probabilities has non-negative curvature. arXiv 1811.07748, 2018.
  50. R.B. Melrose. Manifolds with corners. In preparation.
  51. C.T. Mc Mullen. Thermodynamics, dimension and the Weil-Petersson metric. Invent. Math., 1973:365–425, 2008.
  52. J-P. Otal. Le spectre marqué des longueurs des surfaces à courbure négative. Ann. of Math. (2), 131(1):151–162, 1990.
  53. W. Parry. Equilibrium states and weighted uniform distribution of closed orbits. Dynamical Systems, Lecture Notes in Math., Spinger Verlag, 1342:617–625, 1988.
  54. G. P. Paternain. Geodesic flows, volume 180 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1999.
  55. M. Pollicott. Derivatives of topological entropy for Anosov and geodesic flows. J. Differential Geometry, 39:457–489., 1994.
  56. W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque, (187-188):268, 1990.
  57. Equilibrium states in negative curvature,. Astérisque 373, Soc. Math. France, 373, 2015.
  58. Spectral rigidity and invariant distributions on Anosov surfaces. J. Differential Geom., 98(1):147–181, 2014.
  59. D. Ruelle. Thermodynamic formalism. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 2004. The mathematical structures of equilibrium statistical mechanics.
  60. A. Sambarino. Quantitative properties of convex representations. Comment. Math. Helv., 89(2):443–488, 2014.
  61. K. Sigmund. On the space of invariant measures for hyperbolic flows. American Journal of Mathematics, 94(1):31–37, 1972.
  62. Regularity of ghosts in tensor tomography. J. Geom. Anal., 15(3):499–542, 2005.
  63. B. Schapira and S. Tapie. Regularity of entropy, geodesic currents and entropy at infinity. Annales de l’Ecole Normale Supérieure, to appear.
  64. P. Stefanov and G. Uhlmann. Stability estimates for the X-ray transform of tensor fields and boundary rigidity. Duke Math. J., 123(3):445–467, 2004.
  65. M. E. Taylor. Pseudodifferential operators and nonlinear PDE, volume 100 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1991.
  66. M.E. Taylor. Partial differential equations: basic theory. Springer Verlag, 1996.
  67. W. P. Thurston. Minimal stretch maps between hyperbolic surfaces. arXiv Mathematics e-prints, page math/9801039, Jan 1998.
  68. A. J. Tromba. Teichmüller theory in Riemannian geometry. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1992. Lecture notes prepared by Jochen Denzler.
  69. P. Walters. An introduction to ergodic theory, volume 79 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.
  70. S Wolpert. Thurston’s Riemannian metric for Teichmüller space. J. Diff. Geom., 23:143–174, 1986.
  71. E. Zeidler. Nonlinear functional analysis and its applications. IV. Springer-Verlag, New York, 1988. Applications to mathematical physics, Translated from the German and with a preface by Juergen Quandt.
Citations (20)

Summary

We haven't generated a summary for this paper yet.