Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance of Recommender Systems: Based on Content Navigator and Collaborative Filtering (1909.08219v1)

Published 18 Sep 2019 in cs.CY and cs.SI

Abstract: In the world of big data, many people find it difficult to access the information they need quickly and accurately. In order to overcome this, research on the system that recommends information accurately to users is continuously conducted. Collaborative Filtering is one of the famous algorithms among the most used in the industry. However, collaborative filtering is difficult to use in online systems because user recommendation is highly volatile in recommendation quality and requires computation using large matrices. To overcome this problem, this paper proposes a method similar to database queries and a clustering method (Contents Navigator) originating from a complex network.

Summary

We haven't generated a summary for this paper yet.