Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Video Super-Resolution through Recurrent Latent Space Propagation (1909.08080v1)

Published 17 Sep 2019 in eess.IV

Abstract: With the recent trend for ultra high definition displays, the demand for high quality and efficient video super-resolution (VSR) has become more important than ever. Previous methods adopt complex motion compensation strategies to exploit temporal information when estimating the missing high frequency details. However, as the motion estimation problem is a highly challenging problem, inaccurate motion compensation may affect the performance of VSR algorithms. Furthermore, the complex motion compensation module may also introduce a heavy computational burden, which limits the application of these methods in real systems. In this paper, we propose an efficient recurrent latent space propagation (RLSP) algorithm for fast VSR. RLSP introduces high-dimensional latent states to propagate temporal information between frames in an implicit manner. Our experimental results show that RLSP is a highly efficient and effective method to deal with the VSR problem. We outperform current state-of-the-art method DUF with over 70x speed-up.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dario Fuoli (6 papers)
  2. Shuhang Gu (56 papers)
  3. Radu Timofte (299 papers)
Citations (124)

Summary

We haven't generated a summary for this paper yet.