Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MER-SDN: Machine Learning Framework for Traffic Aware Energy Efficient Routing in SDN (1909.08074v3)

Published 27 Aug 2019 in cs.NI, cs.LG, and stat.ML

Abstract: Software Defined Networking (SDN) achieves programmability of a network through separation of the control and data planes. It enables flexibility in network management and control. Energy efficiency is one of the challenging global problems which has both economic and environmental impact. A massive amount of information is generated in the controller of an SDN based network. Machine learning gives the ability to computers to progressively learn from data without having to write specific instructions. In this work, we propose MER-SDN: a machine learning framework for traffic-aware energy efficient routing in SDN. Feature extraction, training, and testing are the three main stages of the learning machine. Experiments are conducted on Mininet and POX controller using real-world network topology and dynamic traffic traces from SNDlib. Results show that our approach achieves more than 65\% feature size reduction, more than 70% accuracy in parameter prediction of an energy efficient heuristics algorithm, also our prediction refine heuristics converges the predicted value to the optimal parameters values with up to 25X speedup as compared to the brute force method.

Citations (13)

Summary

We haven't generated a summary for this paper yet.