Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation of SDEs -- a stochastic sewing approach (1909.07961v4)

Published 17 Sep 2019 in math.PR, cs.NA, and math.NA

Abstract: We give a new take on the error analysis of approximations of stochastic differential equations (SDEs), utilizing and developing the stochastic sewing lemma of L^e (2020). This approach allows one to exploit regularization by noise effects in obtaining convergence rates. In our first application we show convergence (to our knowledge for the first time) of the Euler-Maruyama scheme for SDEs driven by fractional Brownian motions with non-regular drift. When the Hurst parameter is $H\in(0,1)$ and the drift is $\mathcal{C}\alpha$, $\alpha\in[0,1]$ and $\alpha>1-1/(2H)$, we show the strong $L_p$ and almost sure rates of convergence to be $((1/2+\alpha H)\wedge 1) -\varepsilon$, for any $\varepsilon>0$. Our conditions on the regularity of the drift are optimal in the sense that they coincide with the conditions needed for the strong uniqueness of solutions from Catellier, Gubinelli (2016). In a second application we consider the approximation of SDEs driven by multiplicative standard Brownian noise where we derive the almost optimal rate of convergence $1/2-\varepsilon$ of the Euler-Maruyama scheme for $\mathcal{C}\alpha$ drift, for any $\varepsilon,\alpha>0$.

Citations (49)

Summary

We haven't generated a summary for this paper yet.