Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Sample Test Based on Classification Probability (1909.07836v1)

Published 17 Sep 2019 in math.ST and stat.TH

Abstract: Robust classification algorithms have been developed in recent years with great success. We take advantage of this development and recast the classical two-sample test problem in the framework of classification. Based on the estimates of classification probabilities from a classifier trained from the samples, a test statistic is proposed. We explain why such a test can be a powerful test and compare its performance in terms of the power and efficiency with those of some other recently proposed tests with simulation and real-life data. The test proposed is nonparametric and can be applied to complex and high dimensional data wherever there is a classifier that provides consistent estimate of the classification probability for such data.

Summary

We haven't generated a summary for this paper yet.