Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Decoding Cohen-Haeupler-Schulman Tree Codes (1909.07413v1)

Published 16 Sep 2019 in cs.IT, cs.CC, and math.IT

Abstract: Tree codes, introduced by Schulman, are combinatorial structures essential to coding for interactive communication. An infinite family of tree codes with both rate and distance bounded by positive constants is called asymptotically good. Rate being constant is equivalent to the alphabet size being constant. Schulman proved that there are asymptotically good tree code families using the Lovasz local lemma, yet their explicit construction remains an outstanding open problem. In a major breakthrough, Cohen, Haeupler and Schulman constructed explicit tree code families with constant distance, but over an alphabet polylogarithmic in the length. Our main result is a randomized polynomial time decoding algorithm for these codes making novel use of the polynomial method. The number of errors corrected scales roughly as the block length to the three-fourths power, falling short of the constant fraction error correction guaranteed by the constant distance. We further present number theoretic variants of Cohen-Haeupler-Schulman codes, all correcting a constant fraction of errors with polylogarithmic alphabet size. Towards efficiently correcting close to a constant fraction of errors, we propose a speculative convex optimization approach inspired by compressed sensing.

Citations (6)

Summary

We haven't generated a summary for this paper yet.