Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Linearly Constrained Nonparametric Framework for Imitation Learning (1909.07374v1)

Published 15 Sep 2019 in cs.LG, cs.RO, and stat.ML

Abstract: In recent years, a myriad of advanced results have been reported in the community of imitation learning, ranging from parametric to non-parametric, probabilistic to non-probabilistic and Bayesian to frequentist approaches. Meanwhile, ample applications (e.g., grasping tasks and human-robot collaborations) further show the applicability of imitation learning in a wide range of domains. While numerous literature is dedicated to the learning of human skills in unconstrained environment, the problem of learning constrained motor skills, however, has not received equal attention yet. In fact, constrained skills exist widely in robotic systems. For instance, when a robot is demanded to write letters on a board, its end-effector trajectory must comply with the plane constraint from the board. In this paper, we aim to tackle the problem of imitation learning with linear constraints. Specifically, we propose to exploit the probabilistic properties of multiple demonstrations, and subsequently incorporate them into a linearly constrained optimization problem, which finally leads to a non-parametric solution. In addition, a connection between our framework and the classical model predictive control is provided. Several examples including simulated writing and locomotion tasks are presented to show the effectiveness of our framework.

Citations (11)

Summary

We haven't generated a summary for this paper yet.