Papers
Topics
Authors
Recent
2000 character limit reached

Learning to Benchmark: Determining Best Achievable Misclassification Error from Training Data

Published 16 Sep 2019 in stat.ML and cs.LG | (1909.07192v1)

Abstract: We address the problem of learning to benchmark the best achievable classifier performance. In this problem the objective is to establish statistically consistent estimates of the Bayes misclassification error rate without having to learn a Bayes-optimal classifier. Our learning to benchmark framework improves on previous work on learning bounds on Bayes misclassification rate since it learns the {\it exact} Bayes error rate instead of a bound on error rate. We propose a benchmark learner based on an ensemble of $\epsilon$-ball estimators and Chebyshev approximation. Under a smoothness assumption on the class densities we show that our estimator achieves an optimal (parametric) mean squared error (MSE) rate of $O(N{-1})$, where $N$ is the number of samples. Experiments on both simulated and real datasets establish that our proposed benchmark learning algorithm produces estimates of the Bayes error that are more accurate than previous approaches for learning bounds on Bayes error probability.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.