Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preliminary Exploration on Digital Twin for Power Systems: Challenges, Framework, and Applications (1909.06977v1)

Published 16 Sep 2019 in eess.SP and stat.AP

Abstract: Digital twin (DT) is one of the most promising enabling technologies for realizing smart grids. Characterized by seamless and active---data-driven, real-time, and closed-loop---integration between digital and physical spaces, a DT is much more than a blueprint, simulation tool, or cyber-physical system (CPS). Numerous state-of-the-art technologies such as internet of things (IoT), 5G, big data, and AI serve as a basis for DT. DT for power systems aims at situation awareness and virtual test to assist the decision-making on power grid operation and management under normal or urgent conditions. This paper, from both science paradigms and engineering practice, outlines the backgrounds, challenges, framework, tools, and possible directions of DT as a preliminary exploration. To our best knowledge, it is also the first exploration on DT in the context of power systems. Starting from the fundamental and most frequently used power flow (PF) analysis, some typical application scenarios are presented. Our work is expected to contribute some novel discoveries, as well as some high-dimensional analytics, to the engineering community. Besides, the connection of DT with big data analytics and AI may has deep impact on data science.

Citations (18)

Summary

We haven't generated a summary for this paper yet.