Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak-Instrument Robust Tests in Two-Sample Summary-Data Mendelian Randomization (1909.06950v3)

Published 16 Sep 2019 in stat.ME

Abstract: Mendelian randomization (MR) has been a popular method in genetic epidemiology to estimate the effect of an exposure on an outcome using genetic variants as instrumental variables (IV), with two-sample summary-data MR being the most popular. Unfortunately, instruments in MR studies are often weakly associated with the exposure, which can bias effect estimates and inflate Type I errors. In this work, we propose test statistics that are robust under weak instrument asymptotics by extending the Anderson-Rubin, Kleibergen, and the conditional likelihood ratio test in econometrics to two-sample summary-data MR. We also use the proposed Anderson-Rubin test to develop a point estimator and to detect invalid instruments. We conclude with a simulation and an empirical study and show that the proposed tests control size and have better power than existing methods with weak instruments.

Summary

We haven't generated a summary for this paper yet.