Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Joint Wasserstein Autoencoders for Aligning Multimodal Embeddings (1909.06635v1)

Published 14 Sep 2019 in cs.CV, cs.CL, and cs.LG

Abstract: One of the key challenges in learning joint embeddings of multiple modalities, e.g. of images and text, is to ensure coherent cross-modal semantics that generalize across datasets. We propose to address this through joint Gaussian regularization of the latent representations. Building on Wasserstein autoencoders (WAEs) to encode the input in each domain, we enforce the latent embeddings to be similar to a Gaussian prior that is shared across the two domains, ensuring compatible continuity of the encoded semantic representations of images and texts. Semantic alignment is achieved through supervision from matching image-text pairs. To show the benefits of our semi-supervised representation, we apply it to cross-modal retrieval and phrase localization. We not only achieve state-of-the-art accuracy, but significantly better generalization across datasets, owing to the semantic continuity of the latent space.

Citations (7)

Summary

We haven't generated a summary for this paper yet.