Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sem-LSD: A Learning-based Semantic Line Segment Detector (1909.06591v2)

Published 14 Sep 2019 in cs.CV, cs.LG, and eess.IV

Abstract: In this paper, we introduces a new type of line-shaped image representation, named semantic line segment (Sem-LS) and focus on solving its detection problem. Sem-LS contains high-level semantics and is a compact scene representation where only visually salient line segments with stable semantics are preserved. Combined with high-level semantics, Sem-LS is more robust under cluttered environment compared with existing line-shaped representations. The compactness of Sem-LS facilitates its use in large-scale applications, such as city-scale SLAM (simultaneously localization and mapping) and LCD (loop closure detection). Sem-LS detection is a challenging task due to its significantly different appearance from existing learning-based image representations such as wireframes and objects. For further investigation, we first label Sem-LS on two well-known datasets, KITTI and KAIST URBAN, as new benchmarks. Then, we propose a learning-based Sem-LS detector (Sem-LSD) and devise new module as well as metrics to address unique challenges in Sem-LS detection. Experimental results have shown both the efficacy and efficiency of Sem-LSD. Finally, the effectiveness of the proposed Sem-LS is supported by two experiments on detector repeatability and a city-scale LCD problem. Labeled datasets and code will be released shortly.

Citations (5)

Summary

We haven't generated a summary for this paper yet.