Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of the invariants of foliations by curves of low degree on the three-dimensional projective space (1909.06590v3)

Published 14 Sep 2019 in math.AG and math.CV

Abstract: We study foliations by curves on the three-dimensional projective space with no isolated singularities, which is equivalent to assuming that the conormal sheaf is locally free. We provide a classification of the topological and algebraic invariants of the conormal sheaves and singular schemes for such foliations by curves, up to degree 3. In particular, we prove that foliations by curves of degree 1 or 2 are contained in a pencil of planes or are Legendrian, and are given by the complete intersection of two codimension one distributions. Furthermore, we prove that the conormal sheaf of a foliation by curves of degree 3 with reduced singular scheme either splits as a sum of line bundles or is an instanton bundle. For degree larger than 3, we focus on two classes of foliations by curves, namely Legendrian foliations and those whose conormal sheaf is a twisted null-correlation bundle. We give characterizations of such foliations, describe their singular schemes and their moduli spaces.

Summary

We haven't generated a summary for this paper yet.