2000 character limit reached
Characterising circular-arc contact $B_0$-VPG graphs (1909.06231v1)
Published 13 Sep 2019 in cs.DM and math.CO
Abstract: A contact $B_0$-VPG graph is a graph for which there exists a collection of nontrivial pairwise interiorly disjoint horizontal and vertical segments in one-to-one correspondence with its vertex set such that two vertices are adjacent if and only if the corresponding segments touch. It was shown by Deniz et al. that Recognition is $\mathsf{NP}$-complete for contact $B_0$-VPG graphs. In this paper we present a minimal forbidden induced subgraph characterisation of contact $B_0$-VPG graphs within the class of circular-arc graphs and provide a polynomial-time algorithm for recognising these graphs.