Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Frequency-weighted H2-Pseudo-optimal Model Order Reduction (1909.06106v5)

Published 13 Sep 2019 in eess.SY and cs.SY

Abstract: The frequency-weighted model order reduction techniques are used to find a lower-order approximation of the high-order system that exhibits high-fidelity within the frequency region emphasized by the frequency weights. In this paper, we investigate the frequency-weighted H2-pseudo-optimal model order reduction problem wherein a subset of the optimality conditions for the local optimum is attempted to be satisfied. We propose two iteration-free algorithms, for the single-sided frequency-weighted case of H2-model reduction, where a subset of the optimality conditions is ensured by the reduced system. In addition, the reduced systems retain the stability property of the original system. We also present an iterative algorithm for the double-sided frequency-weighted case, which constructs a reduced-order model that tends to satisfy a subset of the first-order optimality conditions for the local optimum. The proposed algorithm is computationally efficient as compared to the existing algorithms. We validate the theory developed in this paper on three numerical examples.

Summary

We haven't generated a summary for this paper yet.