Subspace Packings -- Constructions and Bounds (1909.06081v2)
Abstract: The Grassmannian $\mathcal{G}_q(n,k)$ is the set of all $k$-dimensional subspaces of the vector space $\mathbb{F}_qn$. K\"{o}tter and Kschischang showed that codes in Grassmannian space can be used for error-correction in random network coding. On the other hand, these codes are $q$-analogs of codes in the Johnson scheme, i.e., constant dimension codes. These codes of the Grassmannian $\mathcal{G}_q(n,k)$ also form a family of $q$-analogs of block designs and they are called subspace designs. In this paper, we examine one of the last families of $q$-analogs of block designs which was not considered before. This family, called subspace packings, is the $q$-analog of packings, and was considered recently for network coding solution for a family of multicast networks called the generalized combination networks. A subspace packing $t$-$(n,k,\lambda)_q$ is a set $\mathcal{S}$ of $k$-subspaces from $\mathcal{G}_q(n,k)$ such that each $t$-subspace of $\mathcal{G}_q(n,t)$ is contained in at most $\lambda$ elements of $\mathcal{S}$. The goal of this work is to consider the largest size of such subspace packings. We derive a sequence of lower and upper bounds on the maximum size of such packings, analyse these bounds, and identify the important problems for further research in this area.