Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active learning for level set estimation under cost-dependent input uncertainty (1909.06064v1)

Published 13 Sep 2019 in stat.ML and cs.LG

Abstract: As part of a quality control process in manufacturing it is often necessary to test whether all parts of a product satisfy a required property, with as few inspections as possible. When multiple inspection apparatuses with different costs and precision exist, it is desirable that testing can be carried out cost-effectively by properly controlling the trade-off between the costs and the precision. In this paper, we formulate this as a level set estimation (LSE) problem under cost-dependent input uncertainty - LSE being a type of active learning for estimating the level set, i.e., the subset of the input space in which an unknown function value is greater or smaller than a pre-determined threshold. Then, we propose a new algorithm for LSE under cost-dependent input uncertainty with theoretical convergence guarantee. We demonstrate the effectiveness of the proposed algorithm by applying it to synthetic and real datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.