Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
106 tokens/sec
Gemini 2.5 Pro Premium
53 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
109 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Query Obfuscation Semantic Decomposition (1909.05819v2)

Published 12 Sep 2019 in cs.CL, cs.CR, and cs.IR

Abstract: We propose a method to protect the privacy of search engine users by decomposing the queries using semantically \emph{related} and unrelated \emph{distractor} terms. Instead of a single query, the search engine receives multiple decomposed query terms. Next, we reconstruct the search results relevant to the original query term by aggregating the search results retrieved for the decomposed query terms. We show that the word embeddings learnt using a distributed representation learning method can be used to find semantically related and distractor query terms. We derive the relationship between the \emph{obfuscity} achieved through the proposed query anonymisation method and the \emph{reconstructability} of the original search results using the decomposed queries. We analytically study the risk of discovering the search engine users' information intents under the proposed query obfuscation method, and empirically evaluate its robustness against clustering-based attacks. Our experimental results show that the proposed method can accurately reconstruct the search results for user queries, without compromising the privacy of the search engine users.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com