Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The local theory of unipotent Kummer maps and refined Selmer schemes (1909.05734v2)

Published 12 Sep 2019 in math.NT

Abstract: We study the Galois action on paths in the $\mathbb{Q}_\ell$-pro-unipotent \'etale fundamental groupoid of a hyperbolic curve $X$ over a $p$-adic field with $\ell\neq p$. We prove an Oda--Tamagawa-type criterion for the existence of a Galois-invariant path in terms of the reduction of $X$, as well as an anabelian reconstruction result determining the stable reduction type of $X$ in terms of its fundamental groupoid. We give an explicit combinatorial description of the non-abelian Kummer map of $X$ in arbitrary depth, and deduce consequences for the non-abelian Chabauty method for affine hyperbolic curves and for explicit quadratic Chabauty.

Summary

We haven't generated a summary for this paper yet.