Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covariance steering in zero-sum linear-quadratic two-player differential games (1909.05468v1)

Published 12 Sep 2019 in eess.SY, cs.SY, and math.DS

Abstract: We formulate a new class of two-person zero-sum differential games, in a stochastic setting, where a specification on a target terminal state distribution is imposed on the players. We address such added specification by introducing incentives to the game that guides the players to steer the join distribution accordingly. In the present paper, we only address linear quadratic games with Gaussian target distribution. The solution is characterized by a coupled Riccati equations system, resembling that in the standard linear quadratic differential games. Indeed, once the incentive function is calculated, our problem reduces to a standard one. Tthe framework developed in this paper extends previous results in covariance control, a fast growing research area. On the numerical side, problems herein are reformulated as convex-concave minimax problems for which efficient and reliable algorithms are available.

Citations (8)

Summary

We haven't generated a summary for this paper yet.