Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L^p\to L^q$ bounds for spherical maximal operators (1909.05389v3)

Published 11 Sep 2019 in math.CA

Abstract: Let $f\in Lp(\mathbb{R}d)$, $d\ge 3$, and let $A_t f(x)$ the average of $f$ over the sphere with radius $t$ centered at $x$. For a subset $E$ of $[1,2]$ we prove close to sharp $Lp\to Lq$ estimates for the maximal function $\sup_{t\in E} |A_t f|$. A new feature is the dependence of the results on both the upper Minkowski dimension of $E$ and the Assouad dimension of $E$. The result can be applied to prove sparse domination bounds for a related global spherical maximal function.

Summary

We haven't generated a summary for this paper yet.