Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Old Are You? Face Age Translation with Identity Preservation Using GANs (1909.04988v1)

Published 11 Sep 2019 in cs.CV

Abstract: We present a novel framework to generate images of different age while preserving identity information, which is known as face aging. Different from most recent popular face aging networks utilizing Generative Adversarial Networks(GANs) application, our approach do not simply transfer a young face to an old one. Instead, we employ the edge map as intermediate representations, firstly edge maps of young faces are extracted, a CycleGAN-based network is adopted to transfer them into edge maps of old faces, then another pix2pixHD-based network is adopted to transfer the synthesized edge maps, concatenated with identity information, into old faces. In this way, our method can generate more realistic transfered images, simultaneously ensuring that face identity information be preserved well, and the apparent age of the generated image be accurately appropriate. Experimental results demonstrate that our method is feasible for face age translation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.