Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spam filtering on forums: A synthetic oversampling based approach for imbalanced data classification (1909.04826v1)

Published 10 Sep 2019 in cs.IR, cs.LG, and stat.ML

Abstract: Forums play an important role in providing a platform for community interaction. The introduction of irrelevant content or spam by individuals for commercial and social gains tends to degrade the professional experience presented to the forum users. Automated moderation of the relevancy of posted content is desired. Machine learning is used for text classification and finds applications in spam email detection, fraudulent transaction detection etc. The balance of classes in training data is essential in the case of classification algorithms to make the learning efficient and accurate. However, in the case of forums, the spam content is sparse compared to the relevant content giving rise to a bias towards the latter while training. A model trained on such biased data will fail to classify a spam sample. An approach based on Synthetic Minority Over-sampling Technique(SMOTE) is presented in this paper to tackle imbalanced training data. It involves synthetically creating new minority class samples from the existing ones until balance in data is achieved. The enhanced data is then passed through various classifiers for which the performance is recorded. The results were analyzed on the data of forums of Spoken Tutorial, IIT Bombay over standard performance metrics and revealed that models trained after Synthetic Minority oversampling outperform the ones trained on imbalanced data by substantial margins. An empirical comparison of the results obtained by both SMOTE and without SMOTE for various supervised classification algorithms have been presented in this paper. Synthetic oversampling proves to be a critical technique for achieving uniform class distribution which in turn yields commendable results in text classification. The presented approach can be further extended to content categorization on educational websites thus helping to improve the overall digital learning experience.

Citations (9)

Summary

We haven't generated a summary for this paper yet.