Faster Johnson-Lindenstrauss Transforms via Kronecker Products (1909.04801v3)
Abstract: The Kronecker product is an important matrix operation with a wide range of applications in supporting fast linear transforms, including signal processing, graph theory, quantum computing and deep learning. In this work, we introduce a generalization of the fast Johnson-Lindenstrauss projection for embedding vectors with Kronecker product structure, the Kronecker fast Johnson-Lindenstrauss transform (KFJLT). The KFJLT reduces the embedding cost to an exponential factor of the standard fast Johnson-Lindenstrauss transform (FJLT)'s cost when applied to vectors with Kronecker structure, by avoiding explicitly forming the full Kronecker products. We prove that this computational gain comes with only a small price in embedding power: given $N = \prod_{k=1}d n_k$, consider a finite set of $p$ points in a tensor product of $d$ constituent Euclidean spaces $\bigotimes_{k=d}{1}\mathbb{R}{n_k} \subset \mathbb{R}{N}$. With high probability, a random KFJLT matrix of dimension $N \times m$ embeds the set of points up to multiplicative distortion $(1\pm \varepsilon)$ provided by $m \gtrsim \varepsilon{-2} \cdot \log{2d - 1} (p) \cdot \log N$. We conclude by describing a direct application of the KFJLT to the efficient solution of large-scale Kronecker-structured least squares problems for fitting the CP tensor decomposition.