Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FDA: Feature Disruptive Attack (1909.04385v1)

Published 10 Sep 2019 in cs.CV, cs.AI, and cs.LG

Abstract: Though Deep Neural Networks (DNN) show excellent performance across various computer vision tasks, several works show their vulnerability to adversarial samples, i.e., image samples with imperceptible noise engineered to manipulate the network's prediction. Adversarial sample generation methods range from simple to complex optimization techniques. Majority of these methods generate adversaries through optimization objectives that are tied to the pre-softmax or softmax output of the network. In this work we, (i) show the drawbacks of such attacks, (ii) propose two new evaluation metrics: Old Label New Rank (OLNR) and New Label Old Rank (NLOR) in order to quantify the extent of damage made by an attack, and (iii) propose a new adversarial attack FDA: Feature Disruptive Attack, to address the drawbacks of existing attacks. FDA works by generating image perturbation that disrupt features at each layer of the network and causes deep-features to be highly corrupt. This allows FDA adversaries to severely reduce the performance of deep networks. We experimentally validate that FDA generates stronger adversaries than other state-of-the-art methods for image classification, even in the presence of various defense measures. More importantly, we show that FDA disrupts feature-representation based tasks even without access to the task-specific network or methodology. Code available at: https://github.com/BardOfCodes/fda

Citations (87)

Summary

We haven't generated a summary for this paper yet.