Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots (1909.03772v2)

Published 9 Sep 2019 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: As reinforcement learning (RL) achieves more success in solving complex tasks, more care is needed to ensure that RL research is reproducible and that algorithms herein can be compared easily and fairly with minimal bias. RL results are, however, notoriously hard to reproduce due to the algorithms' intrinsic variance, the environments' stochasticity, and numerous (potentially unreported) hyper-parameters. In this work we investigate the many issues leading to irreproducible research and how to manage those. We further show how to utilise a rigorous and standardised evaluation approach for easing the process of documentation, evaluation and fair comparison of different algorithms, where we emphasise the importance of choosing the right measurement metrics and conducting proper statistics on the results, for unbiased reporting of the results.

Citations (13)

Summary

We haven't generated a summary for this paper yet.